Higgs at CLIC

Frank Simon

Max-Planck-Institut für Physik

Munich, Germany

on behalf of the CLIC Detector and Physics Study

Snowmass HEF Meeting, BNL

Outline

- Overview Higgs Physics in e⁺e⁻ collisions from 350 GeV to 3 TeV
- CLIC in Stages
- Making Measurement at CLIC
- The Staged Higgs Program
 - 375 GeV
 - 1.4 TeV
 - 3 TeV
- Summary

References

- Brau et al., The physics case for an e⁺e⁻ linear collider, arXiv:1210.0202
- CLIC CDR (#1), A Multi-TeV Linear Collider based on CLIC Technology, https://edms.cern.ch/document/1234244/
- CLIC CDR (#2), Physics and Detectors at CLIC, arXiv:1202.5904
- CLIC CDR (#3), The CLIC Programme: towards a staged e⁺e⁻ Linear Collider exploring the Terascale, arXiv:1209.2543

Frank Simon (fsimon@mpp.mpg.de)

Overview - Higgs Production in e⁺e⁻ Collisions

The leading Higgs production modes in e⁺e⁻ annihilation:

Higgs-Strahlung (s-channel process): Dominates from threshold up to ~ 400 GeV

Vector boson fusion (t-channel process): Dominates above ~ 500 GeV

Overview - Higgs Production in e⁺e⁻ Collisions

Sub-leading processes - top Yukawa coupling, self-coupling

Higgs Strahlung off top quarks (s-channel)

Double Higgs production in Higgs-Strahlung(s-channel)

Double Higgs production in vector boson fusion (t-channel)

Overview - Higgs Production in e⁺e⁻ Collisions

Sub-leading processes - top Yukawa coupling, self-coupling

Frank Simon (fsimon@mpp.mpg.de)

CLIC - A Staged Machine Exploring the Higgs

- CLIC will be implemented in stages: Optimized running conditions over a wide energy range
- The best choice for the stages is defined by physics, with some additional technical considerations
 - May change with additional discoveries
- The current view: Three stages
 - 375 GeV, 500 fb⁻¹, includes top threshold Measure HZ coupling, various branching ratios, W/Z coupling ratio
 - 1.4 TeV, 1.5 ab⁻¹
 Measure ttH, self-coupling
 - 3 TeV, 2 ab⁻¹

 Highest energy to maximize physics reach, measure self-coupling,
 BRs with high precision

primary goal:
Search for
and
measurement
of BSM
phenomena!

CLIC - A Staged Machine Exploring the Higgs

- CLIC will be implemented in stages: Optimized running conditions over a wide energy range
- The best choice for the stages is defined by physics, with some additional technical considerations
 - May change with additional discoveries
- The current view: Three stages
 - 375 GeV, 500 fb⁻¹, includes top threshold Measure HZ coupling, various branching ratios, W/Z coupling ratio
 - 1.4 TeV, 1.5 ab⁻¹
 Measure ttH, self-coupling
 - 3 TeV, 2 ab⁻¹

 Highest energy to maximize physics reach, measure self-coupling,
 BRs with high precision

primary goal:
Search for
and
measurement
of BSM
phenomena!

High statistics: a real Higgs factory!

	No. of H (HZ & Hvv)
Stage 1 - 375 GeV	~ 80 k
Stage 2 - 1.4 TeV	~ 450 k
Stage 3 - 3 TeV	~ 1 M

Making Measurements at CLIC - Environment

 The main challenge: High energy and high luminosity leads to high rates of photon-induced processes:

e⁺e⁻ pairs drive crossing angle & vertex detector radius

 $\gamma\gamma \rightarrow$ hadrons interactions:

3.2 / bunch crossing @ 3 TeV

Combined with bunch structure: Pile-up of hadronic background:

The-up of fladroffic background

- ~ 19 TeV in HCAL / bunch train
- Needs to be rejected by reconstruction

Making Measurements at CLIC - Reconstruction

- Event reconstruction based on Particle
 Flow Algorithms
 - Provides optimal jet energy reconstruction
 - When combined with ns-level timing in the calorimeters: A powerful tool for the rejection of γγ → hadrons background

Reduction of background from 19 TeV to 100 GeV: Challenging CLIC environment under control!

The Benchmark Studies

- Full simulation studies performed in the framework of the CLIC CDR
 - Realistic detector models
 - Full event reconstruction including PFA and timing and pt based background mitigation
 - Inclusion of relevant physics backgrounds
- Machine configurations in CDR studies:
 - 500 GeV (also operated at 350 GeV)
 - 1.4 TeV
 - 3 TeV

Higgs at Stage 1

At 350 GeV both Higgs-Strahlung and

VBF contribute

 Slight penalty on recoil mass measurement - Large influence of muon momentum resolution

Higgs at Stage 1 - 350 / 500 GeV

Model-independent coupling to Z

mass: $\Delta m = \sim 120 \text{ MeV}$

mass: $\Delta m = \sim 100 \text{ MeV}$

(with explicitly reconstructed final state at 500 GeV)

Frank Simon (fsimon@mpp.mpg.de)

Higgs at Stage 1 - 350 / 500 GeV

ents 6002500 Model-independent coupling to Z Fitted total Fitted signal WW 益2000 e^+ Fitted signal HZ Fitted background measure Z recoil 1500 500 GeV, 500 fb⁻¹ no assumptions on H decay 1000 H Events +Input total 500 $=\sim 4\%$ 250 Fitted total Fitted signal -- Fitted background 200 50 150 200 250 100 $ZH \to \mu^+\mu^- X$ $p_{T} [GeV]$ 150 Ratio of Higgsstrahlung and WW fusion 350 GeV, 500 fb⁻¹ 100 provides access to coupling ratio - selection 50 based on H p_T distribution $\Delta \frac{\sigma_{HZ}}{\sigma_{H\nu\nu}} = \sim 5\%$ 200 100 150 M_{recoil} [GeV]

Frank Simon (fsimon@mpp.mpg.de)

Higgs at Stage 1 - 350 / 500 GeV

 M_{recoil} [GeV]

£2500 Model-independent coupling to Z Fitted total ঐ2000 Fitted signal WW e^+ Fitted signal HZ Fitted background measure Z recoil 1500 500 GeV, 500 fb⁻¹ no assumptions on H decay 1000 Events +Input total $=\sim 4\%$ 500 250 Fitted total Fitted signal -- Fitted background 200 50 200 250 100 150 $ZH \to \mu^+\mu^- X$ $p_{T} [GeV]$ 150 Ratio of Higgsstrahlung and WW fusion 350 GeV, 500 fb⁻¹ 100 provides access to coupling ratio - selection 50 based on H p_T distribution $\Delta \frac{\sigma_{HZ}}{\sigma_{H\nu\nu}} = \sim 5\%$ 100 150 200

... and a several BR measurements: bb, cc, gg, ττ, WW*

10

Higgs at Stage 2 - 1.4 TeV

- Additional processes become available:
 - Higgs-top coupling

$$\frac{\Delta\sigma}{\sigma} = \sim 8\%$$

Based on ILC 1 TeV study

Higgs at Stage 2 & 3 - 1.4 TeV & 3 TeV

- Additional processes become available:
 - Higgs self-coupling in WW fusion

- 0.15 fb at 1.4 TeV, 0.6 fb at 3 TeV:
 a few 100 to 1000 events
- Need high luminosity!

NB: 80% e⁻ polarization increases cross-section by 80%

[Q] (XH ^

10

10⁻¹

10⁻²

 $H v_e \overline{v}_e$

t T H

H e⁺e⁻

HHν_e∇_e

1000

HZ

HHZ

3000

√s [GeV]

$$\frac{\Delta \lambda}{\lambda} \sim 30\%$$

1.4 TeV, 1.5 ab⁻¹

$$\frac{\Delta\lambda}{\lambda} \sim 16\%$$

3 TeV, 2 ab⁻¹

unpolarized

2000

potential to improve to ~20% (1.4 TeV) and ~10% (3 TeV) with polarized electrons and further analysis improvement

Higgs at Stage 2 & 3 - 1.4 TeV & 3 TeV

 Take advantage of high luminosity and increasing cross-sections in VBF

 Precise measurement of large BR's, access to rare Higgs decays

$$\Delta(\sigma \times BR(H \to \mu^{+}\mu^{-})) \sim 15\%$$

$$\Delta(\sigma \times BR(H \to b\bar{b})) \sim 0.2\%$$

$$\Delta(\sigma \times BR(H \to c\bar{c})) \sim 3.2\%$$

$$\Delta(\sigma \times BR(H \to \tau^+\tau^-)) < 3.7\%$$

3 TeV

1.4 TeV

A Study of the Full Higgs Program at CLIC

- 350 GeV
 - σ of HZ model-independent HZZ coupling
 - σ x BR of **bb**, **cc**, **gg**, **WW***, **ττ**
 - combined extraction of hadronic BRs
 - Mass and σ(HZ)/σ(Hvv) at 500 GeV
- 1.4 TeV
 - σ x BR of **bb**, **cc**, **gg**, **WW***, μμ, γγ, **Z**γ, ττ
 - **ZZ fusion** ratio of HZZ and and HWW couplings
 - combined fit of hadronic BRs, absolute coupling to W
 - σ of ttH
 - **self-coupling** (expecting improvement from further studies)
- 3 TeV
 - σ x BR of bb, cc, μμ
 - self-coupling (expecting improvement from further studies)
 - potentially also **ZZ fusion**

already done

completion expected by summer, including a combined fit of couplings

Higgs @ CLIC - Benchmark Results Summary

	Observable	stat. uncertainty
HZ	σ	4%
HZ	mass	120 MeV
H → ττ	σxBR	6.2%
HZ / Hvv	σ/σ	5%
HZ, H → bb	mass	100 MeV
H → ττ	σxBR	< 3.7%
HHvv	self-coupling λ	30%
ttH	σ	8%
H → bb	σxBR	0.2%
H → cc	σxBR	3.2%
H → µµ	σxBR	15%
HHvv	self-coupling λ	16%

350 GeV

500 GeV

obtained with cut-reduced signal sample

1.4 TeV

estimated based on 1 TeV ILC study

3 TeV

all based on full simulation studies with SM & beam-induced backgrounds assuming unpolarized beams

(80% e⁻ polarization increases Hvv / HHvv cross-sections by ~ 80%)

The CLIC Detector & Physics Study

 Pre-collaboration structure based on a light-weight "Memorandum of Cooperation": http://lcd.web.cern.ch/LCD/Home/MoC.html

Australia: ACAS; Belarus: NC PHEP Minsk; Czech Republic: Academy of Sciences Prague; Denmark: Aarhus Univ.; Germany: MPI Munich; Israel: Tel Aviv Univ.; Norway: Bergen Univ.; Poland: Cracow AGH + Cracow Niewodniczanski Inst.; Romania: Inst. of Space Science; Serbia: Vinca Inst. Belgrade; Spain: Spanish LC network; UK: Birmingham Univ. + Cambridge Univ. + Oxford Univ.; USA: Argonne lab; + CERN

Additional members welcome!

Summary & Outlook

- CLIC is an exciting and realistic option for a future machine at the energy frontier
 - A wide physics program: Higgs, top, precision measurements, BSM up into multi-TeV region for strong and weak sector
- A full exploration of the Higgs sector with precision measurements
 - Couplings to vector bosons model-independent ZH coupling
 - Couplings to fermions, including rare decays and coupling to top
 - Higgs self-coupling
- Many results from full-simulation studies already available, with a comprehensive study on the way, to be completed in summer

Backup

Making Measurements at CLIC - Detectors

 CLIC detectors: Based on ILC detector complex forward region with final concepts, modified for higher energy beam focusing return yoke with instrumentation for muon ID 4 T and 5 T strong solenoids fine grained (PFA) calorimetry, $1 + 7.5 \lambda_{1}$ 6.5 m main trackers: ultra low-mass TPC+silicon (CLIC_ILD) vertex detector all-silicon (CLIC_SiD) with 20 µm pixels

Frank Simon (fsimon@mpp.mpg.de)

CLIC - The Accelerator

Three stages - CDR parameters

- 500 GeV L 2.3 x 10³⁴ cm⁻²s⁻¹ (L_{0.01} 1.4 x 10³⁴ cm⁻²s⁻¹)
- 1.4 TeV L 3.2 x 10^{34} cm⁻²s⁻¹ (L_{0.01} 1.3 x 10^{34} cm⁻²s⁻¹)
- 3 TeV L 5.9 x 10³⁴ cm⁻²s⁻¹ (L_{0.01} 2.0 x 10³⁴ cm⁻²s⁻¹)

CLIC - 3 TeV Layout

CLIC - Possible Implementation at CERN

CLIC - Towards Realization

2012-16 Development Phase

Develop a Project Plan for a staged implementation in agreement with LHC findings; further technical developments with industry, performance studies for accelerator parts and systems, as well as for detectors.

2016-17 Decisions

On the basis of LHC data and Project Plans (for CLIC and other potential projects), take decisions about next project(s) at the Energy Frontier.

2017-22 Preparation Phase

Finalise implementation parameters, Drive Beam Facility and other system verifications, site authorisation and preparation for industrial procurement.

Prepare detailed Technical Proposals for the detector-systems.

2022-23 Construction Start

Ready for full construction and main tunnel excavation.

2023-2030 Construction Phase

Stage 1 construction of a 500 GeV CLIC, in parallel with detector construction.

Preparation for implementation of further stages.

2030 Commissioning

for data-taking as the LHC programme reaches completion.

Faster implementation possible, for example with a klystron-based first stage as Higgs factory

